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Abstract

Answering a question of Miklós Abért, we prove that an infinite profinite
group cannot be the union of less than continuum many translates of a
compact subset of box dimension less than 1. Furthermore, we show that
it is consistent with the axioms of set theory that in any infinite profinite
group there exists a compact subset of Hausdorff dimension 0 such that one
can cover the group by less than continuum many translates of it.1

Introduction
Recently one can find papers concerning the following questions. If a compact

subset of reals is small in a sense, does it follow that the real line cannot be the
union of less than continuum many translates of it?

Of course, the answer depends on our notion ”small”. U. B. Darji and T.
Keleti [4] proved that if a compact subset C ⊆ R has packing dimension (or box
dimension) less than 1, then R is not the union of less than continuum many
translates of C.

Assuming the continuum hypothesis, if C has Lebesgue measure zero, then R
can only be covered with continuum many translates of C. However, M. Elekes
and J. Steprans [5] showed that in a model of ZFC + cof(N ) < 2ω, there exists a
compact set C ⊆ R of Lebesgue measure zero such that R can be covered with less
than continuum many translates of C, where cof(N ) stands for the cofinality of
Lebesgue nullsets. The existence of such a model is consistent with ZFC, fix such
a model M for our purpose.

M. Elekes and Á. Tóth [6] proved the analogous statement for commutative
Polish groups (with Haar measure taking the role of Lebesgue measure). They also

1The material covered here was part of the author’s Master’s Thesis at Eötvös University,
Budapest; supervisor: Tamás Keleti
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reduced the noncommutative case to the investigation of Lie groups and profinite
groups.

M. Abért [1] proved the theorem for infinite profinite groups. In the same
article he asked whether similar theorems to the result of Darji and Keleti can
hold in the case of infinite profinite groups and box dimension: is it true that if a
compact subset has box dimension less than 1, then the group cannot be covered
with less than continuum many translates of it?

In this paper we prove the following results. First, applying the method due to
Darji and Keleti, we show that if a compact subset of an infinite profinite group has
box dimension less than 1, then the group is not the union of less than continuum
many translates of it.

Then, we show that inM, any infinite profinite group contains a set of Hausdorff-
dimension 0 such that the group is the union of less than continuum many trans-
lates of it. Our technique is based on A. Máthé’s [8], who proved the theorem in
the case of reals.

Note that although the two notions of dimension differ, they coincide in the
case of closed subgroups [2].

We will use the following definition of profinite groups (which ensures that the
group is infinite).

Definition. Let G1, G2, . . . be finite groups and let ϕk : Gk+1 → Gk be onto,
but not one-to-one homomorphisms. Then they determine the profinite group G,
whose elements are

{(g1, g2, . . .) | ∀k ∈ N : gk ∈ Gk, ϕk(gk+1) = gk},

while the multiplication of G is defined as the product of the multiplication in
coordinates:

(g1, g2, . . .) ·G (h1, h2, . . .) = (g1 ·G1 h1, g2 ·G2 h2, . . .).

For any x ∈ G, we denote by x|k the k-th coordinate of x. For any X ⊆ G, let
X|k = {x|k | x ∈ X}.

In the literature, one may find other definitions. Usually, finite groups are
considered to be profinite. Throughout this paper, profinite group means infinite
profinite group.

Let us make the following remark. If we consider only an infinite subsequence
of (Gn) and the compositions of the corresponding homomorphisms, we obtain
a new profinite group that is isomorphic to the original one (and we obtain the
isomorphism, as well). Applying these subsequences will be very useful: without
changing group theoretic properties, we will be able to change other properties.

From now on, we follow [2] in terminology. We introduce the natural metric
on G:

Definition. If x, y ∈ G such that x 6= y, then let d(x, y) = 1/|Gk|, if x|j = y|j for
all j < k and x|k 6= y|k. Let d(x, x) = 0.
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One can readily check that this metric makes G a Polish space. Although this
metric can be changed, when we switch to a subsequence of (Gn), the topology
remains the same.

1 Box-dimension
Let |S| denote the cardinality of set S.

Definition. Assume X ⊆ G. Then let

dimB(X) = lim inf
k→∞

log |X|k|
log |G|k|

; dimB(X) = lim sup
k→∞

log |X|k|
log |G|k|

the lower and upper box-dimension of X, respectively. If dimB(X) = dimB(X),
then we say that dimB(X) exists and its value is dimB(X) = dimB(X).

Throughout this section, dimension means box-dimension.
If G is a given profinite group, we can consider its n-th power Gn. We can

define the lower and upper box-dimensions for the subsets of Gn = G× . . .×G as
above, except for the denominator, in which we still divide by log |G|k|. Hence for
example, dimB(Gn) = n. The metric of Gn is defined as follows:

dn((x1, . . . , xn), (y1, . . . , yn)) = max(d(x1, y1), . . . , d(xn, yn)).

Let X, Y ⊆ G. One can readily check that dimB(X)+dimB(Y ) ≤ dimB(X×Y ),
dimB(X) + dimB(Y ) ≥ dimB(X × Y ). Hence if dimB(X), dimB(Y ) exist, then
dimB(X) + dimB(Y ) = dimB(X × Y ).

Lemma 1.1. If the interior of X ⊆ G is nonempty, then dimB(X) = 1. If the
interior of X ⊆ Gn is nonempty, then dimB(X) = n.

Proof. It is sufficient to verify the 1-dimensional statement. Let x = (x1, x2, . . .)
be an interior point of X. Then for some k ∈ N, (x1, . . . , xk, gk+1, gk+2, . . .) ∈ X for
all gk+1 ∈ Gk+1, gk+2 ∈ Gk+2, . . . such that (x1, . . . , xk, gk+1, gk+2, . . .) ∈ G. Then
for all l ≥ k, |X|l| ≥ |G|l|/|G|k|. Hence log |X|l|/ log |G|l| → 1, since |G|l| → ∞.

If X ⊆ G, then let

Xn
∗ = {(x1, . . . , xn) ∈ Xn|i 6= j ⇒ xi 6= xj}.

Let Fn : Gn+1 → Gn be the following function:

Fn(x1, . . . , xn, g) = (x1g, . . . , xng).

It is easy to see that d(Fn(x), Fn(y)) ≤ d(x, y), which implies that F is continuous.
One can see that Fn cannot increase the lower and upper dimensions, since |X|k| ≥
|F (X)|k|.
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Lemma 1.2. Let X ⊆ G be such that Fn(Xn ×G)∩ P n
∗ = ∅. Then for all g ∈ G,

|Xg ∩P | ≤ n− 1. If |P | = 2ω, then G cannot be covered with less than continuum
many right-translates of X. (Where right-translate of X means Xg.)

Proof. Let us suppose that the first claim is false. Then x1g = y1, . . . , xng = yn are
different elements of P , where x1, . . . , xn ∈ X. Hence Fn(x1, . . . , xn, g) ∈ P n

∗ and
this is a contradiction. The second statement easily follows from the first one.

Lemma 1.3. For some fixed n ≥ 2, let F ⊆ Gn be compact, nowhere dense. Then
there exists a perfect subset P ⊆ G such that |P | = 2ω and F ∩ P n

∗ = ∅.

Proof. First, define a decreasing sequence (Uk) of open sets.
Let U0 = G, which is open. In general, the open set Uk is the union of nk open

components. The components of Uk+1 will be chosen such that they will satisfy
the following properties:

(i) each component of Uk contains n open components of Uk+1;

(ii) every component of Uk+1 has diameter at most 1/2k;

(iii) the closure of every component of Uk+1 is in Uk;

(iv) denote the components of Uk+1 by V1, . . . , Vnk+1 , if x1, . . . , xn are elements of
pairwise different Vj1 , . . . , Vjn , then (x1, . . . , xn) /∈ F .

We prove that P = ∩∞k=0Uk has all the properties we stated in the Lemma.
First |P | = 2ω holds by (i), (iii) and the assumption n ≥ 2. By contradiction,
assume (x1, . . . , xn) ∈ F ∩ P n

∗ . Choose k such that min1≤i6=j≤n d(xi, xj) > 1/2k.
Now by (ii), we see that x1, . . . , xn lie in pairwise different components Vj1 , . . . , Vjn

of Uk+1. This contradicts (iv).
Now we are left to show that one may construct the set Uk+1 starting out

from Uk such that the prescribed properties simultaneously hold. First, take some
V1, . . . , Vnk+1 satisfying (i), (ii), (iii). Next shrink these subsets as follows, this will
not affect these first three properties. Let π : {1, . . . , n} → {1, . . . , nk+1} be an
injective function. Let V ′

1 ⊆ V1, . . . , V
′
nk+1 ⊆ Vnk+1 such that V ′

π(1)×. . .×V ′
π(n)∩F =

∅ (there exist such subsets, because F is not dense in Vπ(1) × . . . × Vπ(n)). We
see that if x1 ∈ V ′

π(1), . . . , xn ∈ V ′
π(n), then (x1, . . . , xn) /∈ F . Now we change

the notation, writing again V1, . . . , Vnk+1 in place of V ′
1 , . . . , V

′
nk+1 and repeat this

shrinking operation for every injective function π : {1, . . . , n} → {1, . . . , nk+1}.
Finally, we obtain a subset Uk+1 = V1 ∪ . . . ∪ Vnk+1 of Uk satisfying (iv).

Lemma 1.4. Let X ⊆ G be compact such that dimB(X) < 1. Then G cannot be
covered with less than continuum many right-translates of X.

Proof. Let n ≥ 2 be such that ndimB(X) < n − 1, which implies dimB(Xn) ≤
ndimB(X) < n−1. Since Xn×G ⊆ Gn+1 and dimB(Xn×G) < n, dimB(Fn(Xn×
G)) < n. By Lemma 1.1, the interior of the compact set Fn(Xn × G) ⊆ Gn is
empty, then Fn(Xn×G) is nowhere dense. Then Lemma 1.3 finishes the proof.

By switching to a well-chosen subsequence of (Gn), we can strengthen our
theorem to lower dimension.
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Theorem 1.5. Let X ⊆ G be compact such that dimB(X) < 1. Then G cannot
be covered with less than continuum many right-translates of X.

Proof. Let us choose a subsequence of Gn. The obtained group, denoted by G̃ is
isomorphic to G. Let X be a given compact subset of G such that dimB(X) < 1.
By definition, for a convenient subsequence, d̃imB(X̃) = dimB(X) < 1 holds.
Since less than continuum many right-translates of X̃ cannot cover G̃, less than
continuum many right-translates of X cannot cover G.

2 Hausdorff-dimension
We define the Hausdorff-dimension following [2].

Definition. Let X ⊆ G. Then

µs
δ(X) = inf

{
∞∑

n=1

(diam(An))s |
∞⋃

n=1

An ⊇ X, diam(An) < δ

}
,

µs(X) = lim
δ→0

µs
δ(X).

Furthermore,

dimH(X) = sup{t | µt(X) = ∞}(= inf{t | µt(X) = 0})

is the Hausdorff-dimension of X.

In this section, dimension means Hausdorff-dimension. Our aim is to prove that
in an appropriate model, there exists a compact subset C ⊆ G with dimH(C) = 0
such that G is the union of less than continuum many translates of C. We will use
the following notation: Nj CG is the normal subgroup of G consisting of elements,
whose j-th coordinate is 1 (the unit element of the corresponding group), that is,
Nj = {x ∈ G : x|j = 1}.

Lemma 2.1. Let n, k ∈ N. Then there exists a compact set Kn,k ⊆ G with the
following properties:

(i) it is the union of closed subsets Fi such that
∑

i diam(Fi)
1/k < 1/k;

(ii) for arbitrary x1, . . . , xn ∈ G there exists g ∈ G such that x1g, . . . , xng ∈ Kn,k;

(iii) Kn,k is the union of a normal subgroup Nj and some of its cosets.

Proof. Fix k ∈ N. We will construct Kn,k by induction on n. For n = 1, it is
enough to put K1,k = Nj for a sufficiently large j.

Now assume Kn−1,k is constructed. We will obtain Kn,k by adding some subsets
to Kn−1,k. By (iii), Kn−1,k consists of a normal subgroup Nj and some of its cosets.
Further by (ii), for some closed subsets Fi and ε > 0, Kn−1,k = ∪iFi and∑

i

diam(Fi)
1
k <

1

k
− ε.
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Take an element from each coset of Nj, denote them by h1, . . . , hm. Then take
some closed balls B1, . . . , Bm such that

(a) h1 ∈ B1, . . . , hm ∈ Bm;

(b)
m∑

i=1

diam(Bi)
1
k < ε;

(c) the balls B1, . . . , Bm are all cosets of a normal subgroup Nj′ for some j′ > j.

We claim that Kn,k = ∪iBi ∪ Kn−1,k has all the properties we need. The in-
duction hypothesis, (a) and (c) give (i) and (iii) immediately. As for (ii), let
x1, . . . , xn be arbitrary elements of G. By the induction hypothesis, for elements
x1, . . . , xn−1, there is a g ∈ G such that x1g, . . . , xn−1g ∈ Kn−1,k. Then xng is in
one of the cosets corresponding to Nj, which implies that for an appropriate ele-
ment g′ ∈ Nj, xngg′ = hi ∈ Bi. Furthermore, multiplication with g′ from the right
(x 7→ xg′) maps each coset of Nj to itself, hence gg′ is an appropriate element:
x1gg′, . . . , xngg′ ∈ Kn,k.

Corollary 2.2. If n, k ∈ N, Nj is a given normal subgroup and H is a coset of
Nj, then there exists a subset KH

n,k ⊆ H satisfying the following properties:

1. it is the union of closed subsets Fi such that
∑

i diam(Fi)
1/k < 1/k;

2. for arbitrary x1, . . . , xn ∈ H there exists a g ∈ Nj such that x1g, . . . , xng ∈
KH

n,k;

3. KH
n,k is the union of some cosets corresponding to a normal subgroup Nj′

(j′ > j).

Proof. Let us take Kn,k from Lemma 2.1. Denoting by H1, . . . , Hm the cosets of
Nj, there exist h1, . . . , hm ∈ G such that H1h1 = . . . = Hmhm = H. Let

KH
n,k =

m⋃
i=1

(Kn,k ∩Hi)hi.

One can easily check that the defined set satisfies the conditions.

Definition. Let f : N → N. Then we call a set
∏∞

n=1 An f -slalom, if |An| ≤ f(n)
for all n ∈ N. Let f and an f -slalom

∏∞
n=1 An be given. We say that g : N → N

is a sub-slalom-size, if g(n) ≤ f(n) holds for all n ∈ N. We call a set
∏∞

n=1 Bn

g-sub-slalom, if it is a g-slalom and Bn ⊆ An for all n ∈ N.

Let f, g : N → N, where g(i) < f(i). Assume that f(i) and g(i) tend to in-
finity. Recall that M is a model for ZFC with the further consistent assumption
cof(N ) < 2ω. In M, every f -slalom can be covered with less than continuum
many g-sub-slaloms: the method is described in [5, page 9− 10.], where the au-
thors use [7, Theorem 2.10.] and [3, Theorem 2.3.9. and page 388.]
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Our plan is the following. We define an f -slalom that corresponds to G and
introduce a g sub-slalom-size that tends to infinity. Using the sets Kn,k, we con-
struct a zero-dimensional compact subset C ⊆ G such that any g-sub-slalom can
be right-translated into C.

2.1 Construction of C.

Consider the set K̃1,1 = K1,1 given by Lemma 2.1. Assume that it consists of a
single normal subgroup Nj.

Assume that we are on the m-th level and we have already defined the subset
K̃(m−1)!,(m−1)! that consists of some cosets of the same size (corresponding to the
same normal subgroup). Denote one of these cosets by H. Then K̃(m−1)!,(m−1)!

consists of some appropriate left-translates of H: H = H1, . . . , HS(m−1). Hence for
appropriate elements 1 = h1, . . . , hS(m−1), H = h1H1 = . . . = hS(m−1)HS(m−1). In
H, take the subset KH

m!,m!S(m−1) given by Corollary 2.2. Then apply every h−1
i and

let

K̃m!,m! =

S(m−1)⋃
i=1

h−1
i KH

m!,m!S(m−1).

By this induction, we obtain a set K̃m!,m! for all m.
Then (K̃m!,m!) is a sequence of decreasing compact sets. Let

C =
∞⋂

m=1

K̃m!,m!.

Lemma 2.3. dimH(C) = 0.

Proof. By the definition of KH
m!,m!S(m−1), there exist some closed sets Fi such that

KH
m!,m!S(m−1) = ∪iFi and

∑
i

diam(Fi)
1

m!S(m−1) <
1

m!S(m− 1)
.

Since K̃m!,m! is the union of S(m− 1) copies of KH
m!,m!S(m−1), it is covered with the

union of closed sets Fi such that∑
i

diam(Fi)
1

m!S(m−1) <
1

m!
.

Then, by increasing the exponent (diam(G) ≤ 1),∑
i

diam(Fi)
1

m! <
1

m!
,

which implies that C is zero-dimensional.
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2.2 Defining the slalom corresponding to G.

Consider the following subsequence of (Gn). Let Nmk
be a strictly decreasing

sequence of the normal subgroups such that K̃m!,m! consists of cosets corresponding
to Nmk

. We can switch to any infinite subsequence of (Gn). Choose a subsequence
(denoted by (Gm)) such that the following two conditions hold: K̃m!,m! consists
of cosets corresponding to Nm; |Gm/Gm−1| > m (where G0 is the trivial group).
From this point on, we use this sequence, which defines G, as well. Recall that
the topology is the same, however the metric could change (let the new metric be
d′). Let f(m) = |Gm/Gm−1| and let g(m) = m. The f -slalom corresponding to
G is the following:

∏∞
m=1 Gm/Gm−1. It is indeed an f -slalom and it represents

G as follows: the elements of G are in natural bijection with the elements of the
product of the quotient maps ϕm (m = 1, 2, . . .).

Lemma 2.4. Let Z be a g-sub-slalom. There exists a y ∈ G such that Zy ⊆ C.

Proof. Recall the notations of the construction. Let K̃(m−1)!,(m−1)! consists of the
cosets H = H1, . . . , HS(m−1) that correspond to Nm−1. Let 1 = h1, . . . , hS(m−1) ∈ G
be such that H = h1H1 = . . . = hS(m−1)HS(m−1).

First, we prove by induction that for all m there exists a ym ∈ G such that
(Zy)|m ⊆ (K̃m!,m!)|m. This is clear for m = 1, since |Z|1| = 1 and K̃1!,1! is nonempty.
Suppose that it holds for m − 1. For all i, |Z|i| ≤ i!. By induction, there exists
x ∈ G such that

(Zx)|m−1 ⊆ (K̃(m−1)!,(m−1)!)|m−1 = (H1)|m−1 ∪ . . . ∪ (HS(m−1))|m−1.

Since H1, . . . , HS(m−1) are cosets of Nm−1, if they contain a subset restricted to
Gm−1, then so do in G. Therefore (Zx)|m ⊆ (H1)|m ∪ . . . ∪ (HS(m−1))|m. For all
b ∈ Z, we take a left-translate of (bx)|m ∈ (Zx)|m that is in the coset H|m the
following way: for each element (bx)|m ∈ (Hi)|m, consider (hibx)|m. The number of
elements of the form (bx)|m is at most m!, since Z is a g-slalom. We left-translated
all of these elements (bx)|m by exactly one element hi. Therefore we have at most
m! elements of the form (hibx)|m in H|m. Then we can right-translate all element of
the form (hibx)|m into (KH

m!,m!S(m−1))|m by an appropriate element h ∈ G: continue
each element of the form (hibx)|m to an element of G, these continuations can be
right-translated into KH

m!,m!S(m−1), by its definition. Then xh is a suitable element
ym, because for any b ∈ Z ((bx)|m ∈ (Hi)|m)

(bxh)|m = (h−1
i hibxh)|m ∈ (h−1

i KH
m!,m!S(m−1))|m ⊆ (K̃m!,m!)|m,

which completes the proof of the first claim.
For all m, consider the element ym ∈ G such that (Zym)|m ⊆ (K̃m!,m!)|m.

Because of the compactness of G, (ym) has a convergent subsequence. Let its
limit be y. We claim that Zy ⊆ C. We will prove it by contradiction. Suppose
that for an element b ∈ Z, by /∈ C. Let d′(by, C) = D > 0. If m > m0, then
d′(bym, by) < D/2. Furthermore, if m > m1, then K̃m!,m! ⊆ UD/2(C), where
Uε(C) = {x ∈ G | d′(x, C) < ε}. Since (bym)|m ∈ (K̃m!,m!)|m, bym ∈ K̃m!,m!

(because of the fact that K̃m!,m! is the union of complete cosets corresponding to
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Nm, if it contains an element restricted to Gm, then so do in G). Hence d′(bym, C) <
D/2. If m > m0, m1, then

d′(by, C) ≤ d′(bym, by) + d′(bym, C) < D,

which is a contradiction.

Theorem 2.5. Let G be a profinite group. In M, there exists a compact subset
X of Hausdorff-dimension 0 such that G can be covered with less than continuum
many right-translates of X.

Proof. By Lemma 2.3, C is zero-dimensional and by Lemma 2.4, every g-sub-
slalom can be covered with an appropriate right-translate of C. Since G is the
union of less than continuum many g-sub-slaloms in M, G is the union of less
than continuum many right-translates of C.
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